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A numerical investigation of the stability of an axisymmetric magnetic field is dis- 
cussed. The magnetic field permeates a finitely conducting fluid contained within 
a rapidly rotating cylindrical annulus. The fluid is incompressible and viscid. The 
evolution of a non-axisymmetric perturbation to the axisymmetric magnetic field is 
governed by the momentum and induction equations which are integrated using a 
spectral timestep method. We follow the growth of the perturbation to finite ampli- 
tude and find that the character of the solution is dominated by the most unstable 
axially dependent mode found from the linear theory. 

1. Introduction and background 
Evidence from the magnetization of ancient rocks has shown that, on average, 

the intensity of the Earth’s magnetic field has remained relatively unchanged for 
the past 3 billion years. It is now generally accepted that this magnetic field is 
generated, and maintained, by fluid motion in the Earth’s outer core where mag- 
netic field lines of force are twisted and sheared by the flow, thus reinforcing the 
field. One of the most striking aspects of the Earth’s magnetic field is that it re- 
verses its sign every few hundred thousand years, although it only takes about ten 
thousand years for the field to reverse. The field also changes its configuration on 
shorter timescales. In particular a recent investigation of the magnetic field mor- 
phology at the Earth’s core-mantle boundary (Bloxham, Gubbins & Jackson 1989) 
has shown that hydromagnetic wave-like oscillations have persisted for the past 
four hundred years. If such oscillations become large enough then they may cause 
the field pattern to change dramatically, and may trigger a reversal. Furthermore 
McFadden & Merrill (1993) carried out a statistical analysis of the reversal record 
and suggested a model whereby reversals of the field are triggered by internal in- 
stabilities of the fluid motion of the core. A study of the stability of the Earth’s 
magnetic field may go some way to explain what fields are observed and how strong 
they are - the field is stable for long periods of geological time - and may lead 
to new ideas about reversal mechanisms. Extensive linear analyses of the stability 
of a toroidal magnetic field have been made. One of the simplest models is the 
field 

where (s*,+,z*) are cylindrical polar coordinates, s = s*/so, z = z*/so, and BM is a 
constant. This field permeates an electrically conducting fluid in a cylindrical annulus 

Bo = BhfsF(s)d, (1.1) 
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of outer radius so, and inner radius si, rotating rapidly about its axis with uniform 
angular velocity 

Field (1 .1)  is chosen as being representative of planetary magnetic fields since it 
is widely believed that strong toroidal fields are generated by shearing of poloidal 
magnetic field. 

The linear stability of (1 .1 )  has been investigated in a numerical study by Fearn (1983, 
1984, 1985, 1988, 1989). Two types of instability have been found: ideal and resistive. 
The ideal mode was first discussed by Acheson (1972, 1973, 1978, 1983) who recog- 
nized that the instability is favoured by a strong gradient of the magnetic field (this 
instability is often referred to as the field gradient instability). Another distinguishing 
feature of this mode is that it can exist in the diffusionless (ideal) limit. The resistive 
mode requires some resonant surface k - Bo = 0 (where k is the wavenumber of 
the instability) and vanishes in the diffusionless limit - the resistive mode requires 
reconnection and breaking in the neighbourhood of the resonant surface. 

A global condition for instability of field (1 .1)  was found, in terms of the Elsasser 
number, A,  to be 

where 

and 

The magnetic diffusivity q, magnetic permeability p, and fluid density po are all taken 
to be constant, s 2 ~  is the Alfvh frequency, z,, is the ohmic decay time and z, is the 
‘slow’ MHD timescale which is the natural timescale when there is a balance between 
Coriolis and Lorentz forces. The Elsasser number, A which may be written as the 
ratio between the Lorentz force and the Coriolis force (and is thought to be O( 1-100) 
for the Earth) can also be regarded as an inverse measure of magnetic diffusion. 
Fearn’s (1983) model has been investigated further by Fearn & Weiglhofer (1992~)  
and extended to a spherical geometry by Fearn & Weiglhofer (1991a,b, 1992b) and 
more recently by Zhang & Fearn (1993, 1994). 

These linear analyses have been important in advancing our knowledge of the 
conditions under which planetary magnetic fields become unstable but to examine 
how magnetic field instabilities evolve by extracting energy from the basic state 
requires a nonlinear analysis. To proceed we take a step backward and choose a 
cylindrical geometry instead of the more realistic spherical geometry. This choice 
simplifies the numerical approach substantially whilst retaining the essential physics 
of the problem. 

An important aspect of the evolution of the instability is the concomitant evolution 
of the basic state. In the linear analysis it is sufficient to consider the basic state 
(for example (1 .1))  as given and perform a stability analysis about the basic state. 
In the nonlinear problem, the basic state is an integral part of the solution since it 
is modified by the evolution of the instability and magnetic diffusion (this is also 
true for the linear problem, but in that case the solution may be thought of as an 
instantaneous snapshot). As a first approximation we consider the basic state as an 
ambient field that satisfies the relevant boundary conditions, and we assume that its 
diffusion is balanced by a dynamo generation not modelled here. However, we do 
calculate the perturbation to the basic state as the instability evolves. Ideally we 

Qo = Qd. (1.2) 

A B A ,  2 O(1) (1.3) 

A = z+,/rs, T,, = .$/q, T, = 2Qo/QL, (1.4) 

Q M  = Bw/So(PLP,)”2. (1.5) 
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FIGURE 1. Geometry of the annular core model. The annulus is rotating rapidly about its axis, with 
uniform angular velocity Q,$. 

would like to consider the basic state simply as an initial condition for the nonlinear 
problem, but the current approximation is a reasonable starting point for future 
calculations. 

Another important consideration is the parameterization of the viscosity of the 
fluid in the Earth’s core. The magnetostrophic approximation takes advantage of the 
fact that the viscosity is small by assuming that the dimensionless measure of the 
fluid viscosity, the Ekman number, e = v/2S20sb, is zero (where v is the kinematic 
viscosity). However, Taylor (1963) showed that solutions can only exist if the magnetic 
field satisfies the constraint 

where J is the current density and C(s) is the cylinder coaxial with the rotation 
axis, of radius s and contained within the core. This condition is modified if viscous 
boundary-layer effects are included. We therefore have a choice. We can either retain 
the Ekman number as a variable parameter of the problem, and choose a value that 
is small enough to be numerically tractable whilst being of geophysical interest, or 
we can choose to neglect the viscous effects in the main body of the fluid and deal 
with the problem of satisfying the modified Taylor integral separately. In this paper 
we choose the former approach, and retain c as a free parameter. 

The remainder of this paper is organized as follows. In $2 we describe our 
cylindrical model and write down the equations that govern the system. In $3 the 
numerical method (which is dealt with in an appendix) is tested against some well- 
known linear results. The nonlinear evolution of the instability and modified basic 
5tate are described in $4, and finally the results are discussed in $5. 
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2.  
The model we are investigating consists of a finite cylindrical annulus of inner radius 

si ,  outer radius so and height 2h which is rotating about its axis with angular velocity 
520 = SZG. The region {si < S* < so; -h < Z* < +h} is filled with an incompressible 
conducting fluid of constant kinematic viscosity v ,  magnetic diffusivity q ,  magnetic 
permeability p, and density po. The regions (0 < S* < g; -h < z* < +h} and 
{so < s'; -h < Z* < +h} are rigid and may be either perfect electrical insulators or 
perfect conductors. The regions {+h < z * }  and ( - h  2 z'}  are perfect conductors and 
the boundaries at z = f h  are stress-free. The fluid moves with a velocity 0' and is 
permeated by a magnetic field B .  The model is shown in figure 1 .  

In a frame of reference co-rotating with the fluid the equations that govern the 
fluid motion and the evolution of the magnetic field are 

K .  A.  Hutcheson and D. R. Fearn 

A model of the Earth's core 

po (CE + 0' * V6' + 2520 x 8' = -vP' + /.-*(VxB*) x B' + povv20*, (2.1) 
at ) 

aB- 
- = Vx(0' x B') + #B*, 
at 

V.0'=V.B'=O, (2.3) 
where 8' is the fluid pressure. Since we are only interested in magnetic instabilities, 
buoyancy effects are not included and we do not solve a corresponding forcing 
equation. By introducing a non-dimensionalization based on length so, time zs, and 
magnetic field strength BM,  (2 .1H2 .3 )  may be written as 

Ac,[$+8.V8 + ~ X ~ = - ~ P + ( V X B ) X B + ~ V ~ ~ ,  1 
aB 
at 
- = V X ( ~  x B) + A-'V2B, 

v *  8 = v - B =  0, (2.6) 
where the magnetic Ekman number and the Ekman number, are defined by 

€ q  = q/2Qos2, e = v/252os;. (2.7) 

The Elsasser number, A and the slow M H D  timescale, z, are defined in $1. In the 
following analysis we set the magnetic Ekman number e,, to zero since the dynamo 
timescale is very much longer than the rotation period, at1. As a consequence, the 
character of the momentum equation changes from prognostic to diagnostic. Using 
this non-dimensionalization the height of the cylinder is 2!: where !: = h/s,. Also we 
do not define a measure of the velocity field strength: the scale of the velocity is 
defined implicitly by so and z,. 

Since we want to examine how a non-axisymmetric instability evolves by extracting 
energy from an axisymmetric field it is useful to separate B,8 and P into axisymmetric 
and non-axisymmetric components 

(2.8) 

(2.9) 

(2.10) 

8 = U(S, z ,  t )  + u(s, 0, z ,  t ) ;  (u)  = 0, 

= P(S, z ,  t )  + P ( S ,  44 z ,  0, ( P )  = 0, 

B = B(s,z, t )  + b ( ~ ,  0, Z, t ) ;  B(s,z, t )  = &(s) + ~ B ( s , z ,  t ) ;  (b) = 0, 
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where &(s) is the ambient basic state and SB is the axisymmetric perturbation from 
the basic state and 

V(S, 4% 4) = 1 271 Ii' f(s, 4, z)d4 

where f is either p or any of the components of u or b. Moreover, we carry out a 
poloidal-toroidal decomposition of the magnetic and velocity fields 

u = wp + up, u p  = v x  vp, u = v x v s  + v x v x w s ,  (2.11) 

B = ( G ~  + + B ~ ,  B~ = v x  H$, b = v x h s  + v x v x g s .  (2.12) 
Similar decompositions for the non-axisymmetric fields were used by Jones (1985). 
The solenoidal and incompressibility conditions (2.6) are automatically satisfied by 
(2.11) and (2.12) and the number of dependent variables is kept to a minimum - a 
feature that is important in the numerical solution of (2.4)-(2.6) (see the Appendix). 
Substituting (2.8)-(2.12) into (2.4)-(2.6), the separated equations can be written as 

--- a' eD2 W = [ ( V x B )  x B]+ + ( ( V x b )  x b ) ~ ,  (2.13) az 

(2.14) 
aw 
aZ - - + F ( D ~ ) ~ V  = [ V x ( ( V x B )  x B)]+ + ( V x ( ( V x b )  X b))+, 

-- a ( S G )  A - ~ D ~ ( s G )  = pX(u x B)]+ + ( V X ( ~  x b))+, (2.15) 

(2.16) 

at 

-- aH A-'D2H = (U x B)o + (u x b)$, 
at 

i x u = -vp + ( ( V X B )  x b + ( V x b )  x B )  
+€V2U + [ ( V x b )  x b - ( ( V x b )  x b)] ,  (2.17) 

ab 
- = V x ( u  x B )  + V x ( U  x b) + A-'v2b 
at 

+ [ V x ( u  x b) - ( V x ( u  x b))] ,  (2.18) 

where 
D2 = (V2 - s - ~ )  . 

Equations (2.13H2.16) govern axisymmetric field evolution and (2.17) and (2.18) 
govern non-axisymmetric field evolution. The final diagnostic non-axisymmetric 
equations are found from s V x (2.17) and s - V x V x (2.17). As a consequence the fluid 
pressure is eliminated from the equations. Similarly, the prognostic non-axisymmetric 
induction equations are found from ~(2.18) and s o  Vx(2.18). 
By choosing stress-free and perfectly conducting flat ends at z = +( the boundary 

conditions on total fields 8 and B are 

(2.19) 

and 
(2.20) 

where 8 is the total electric field and di, is the rate-of-strain tensor - i is either s or 4 
(see, for example, Gubbins & Roberts 1987). This choice has been made for numerical 
convenience and enables us to readily expand the dependent variables in terms of 

z  ̂ 8 = biZf = 0, 

f B = f x 8 = 0, 
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complete sets of functions in z that automatically satisfy the boundary conditions - 
see the Appendix. Once the &dependence has been expanded using Fourier series, we 
are left with an order-20 system in the independent variable s. We therefore need 10 
boundary conditions at each of the sidewalls to determine the integration constants. 
Given that the sidewalls are rigid the boundary condition on the velocity field d is 
simply 

Our condition on the magnetic field B is that the field matches some external potential 
field, @, such that 

Solutions to (2.13)-(2.18) with velocity boundary conditions (2.21) and magnetic 
boundary conditions (2.22), are found using a spectral method in space and a con- 
ditionally stable semi-implicit timestepping method in time. Details of the numerical 
method can be found in the Appendix. 

0 =o.  (2.21) 

B ( e )  = -V@; v2Q, = 0. (2.22) 

3. 
Accurate tests of the spectral-timestep (ST) code were carried out by comparing 

our results with those found from the linear stability analysis of a basic state. In 
the linear problem the axisymmetric field is fixed, equations (2.13)-(2.16) do not 
participate and the bracketed terms in (2.17) and (2.18) (the nonlinear interaction 
of non-axisymmetric fields) can be ignored. It is a simple matter to remove the 
nonlinear contribution from the ST code and compare our results with results from 
linear eigenvalue (LE) codes. 

Our main source of comparison is with the finite difference LE code of Fearn (1983) 
in which a single angular ( 4 , ~ )  mode is chosen (i.e. the azimuthal wavenumber m 
and axial wavenumber n are chosen) and its destabilizing effect upon a basic state is 
investigated. In particular, the finitely conducting viscid region is divided into a finite 
number of steps, differential operators are replaced by fourth-order finite difference 
operators and the resulting banded matrix eigenvalue problem is solved using inverse 
iteration. The returned eigenvalue is the complex growth rate of the instability, A. 
An approximation to 1 can be readily found at time r from the ST code using a 
first-order Taylor expansion, 

Algorithm testing in the linear regime 

1=-[ U ( t  + - 11 for ~t << 1, 
At u ( t )  

(3.1) 

where u stands for any of the components of u or b and At is the timestep. 
The first basic state we examined was the toroidal field of Fearn (1983) 

B = BMsF(s )$ ;  where F ( s )  = [2/( 1 - s&)I2[1 - sa] [sa - s 3 ,  (3.2) 

which is illustrated in figure 2 for ct = 4.0 (s ib  = si/so, and we choose Sib = 0.35 
in all the calculations in this paper). The smooth line represents the exact function 
F ( s ) ,  and the dots indicate the points in radius where our collocation equations (and 
boundary conditions) are solved for L = 10. Setting m = 1,n = 3 (where n = kn/25, 
see Appendix),a = 4,r = and U = 0 and incorporating insulating boundaries, 
the LE code locates a mixed mode instability (i.e. a mode that does not behave 
completely like either of the categories of ‘ideal’ or ‘resistive’, see Fearn 1988) with 
Ac = 16.8088 and w, = -1.05027 (the negative sign indicates westward propagation). 
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FIGURE 2. Field F ( s )  given by (3.2) for a = 4.0. 

L ~t = 1 x 10-3 At = 5 ~ 1 0 ~ ~  At = 1 ~ 1 0 ~  At = 5~ lop5 

10 (-0.19462, -1.1333) (-0.19527, - 1.1339) (-0.19579, -1.1343) (-0.19585, - 1.1343) 
15 (-0.00094, -1.0490) (-0.00134, -1.0496) (-0.00166, -1.0502) (-0.00170, -1.0502) 
20 ( 0.0O074, -1.0487) ( 0.0O034, -1.0494) ( 0.00002, -1.0499) ( O.ooOo2, -1.0500) 
25 ( 0.00071, -1.0490) ( 0.00003, -1.0496) (-0,00001, -1.0502) (-0.00005, -1.0502) 
30 ( 0.00073, -1.0490) ( 0.00033,-1.0496) ( O.oooO1, -1.0502) (-0.00003, -1.0503) 
35 ( O.ooO73,-1.0490) ( 0.00033,-1.0496) ( 0.00002, -1.0518) (-0.0OOO3,-1.0502) 

TABLE 1. 1 found from ST code. (LE code: A = (0.370806 x 10-4,-1.0503).) 

We ran our ST code with A = 16.8088, and kept all other parameters the same as 
in the LE code. Table 1 shows results for the critical growth rate, I found from 
the ST code for various values of the timestep, At and at varying radial truncations, 
L. First, notice that an L = 10 truncation gives a poor approximation to I for any 
practical value of At: we need at least L = 15 to resolve the thin boundary layers 
that develop for e = lop5. Using the critical frequency found from the LE calculation 
as our benchmark, the L = 15,At = lop3 solution is 99.88% accurate whereas the 
L = 30,At = 5 x lop5 is 99.998% accurate. However, the trade-off in the required 
CPU time to achieve the slightly higher accuracy is large. The L = 15,At = lo-' 
calculation takes - 87.5 CPU seconds for a time integration of 1 0 ~ ~  on a DEC-a. 
The corresponding L = 30,At = 5 x lop5 calculation takes - 5776 CPU seconds. 
By setting m = 2,n = 3,a = 1 , ~  = lo-', and U = 0, in the LE code a resistive 
mode with w, x 0.17187 at A,  x 29.29717 was found for basic state (3.2). Setting 
A = 29.29717,At = lop3, L = 35, the ST code gave w, x 0.17176. 

In these checks we have set U = 0. To test the effect of the differential rotation in 
our ST code we temporarily introduce another dimensionless parameter, the modified 
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magnetic Reynolds number, B,, defined by 
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(3.3) 

where UM is a measure of the strength of the toroidal flow given by U = UMss2(s)t$. 
With m = 2,n = 3,a = 4 , ~  = and R,,, = 10 the LE code located the point of 
marginal stability at A,. = 9.31994 (3, = 1.07297) and (0, = 0.453241. The equivalent 
ST calculation with L = 35,At = 

Finally, we looked at a mode that was ideal in character. Using a toroidal field 
as in (3.2) but with F = sa and choosing the parameters A = 90,m = 1,n = 2.1,a = 
1 , ~  = the LE code gives i = (0.4743441 x 10-2,-0.285199) - the corresponding 
ST calculation with L = 14,At = lop3 gives 2 = (0.47437318 x 10-',-0.28600623). 
In summary, these tests have shown that the timestep code agrees well with the 
eigenvalue code, and it is clear from table 1 that we can achieve any desired degree 
of accuracy with an appropriate choice of L and At. 

gives w, = 0.4516812 for A = 9.31994. 

4. Equilibrated field solutions for  moderate Ekman number 

One of the main considerations in performing the nonlinear spectral calculations is 
computer time and storage, and as is usual in numerically intensive endeavour, there 
is a substantial trade-off between physical realism and obtainable results. 

Our first concession is our choice of Ekman number, E .  It is well known that 
viscous boundary layers, which have thicknesses proportional to E, develop near the 
boundaries of a contained, rapidly rotating fluid. In the Earth the viscosity is poorly 
determined, but it is generally agreed that its value is small. As discussed in the 
introduction we have chosen to retain E as a variable parameter and in the first 
instance we attempt to solve the instability equations with the most practical and 
most realistic Ekman number. For this we have chosen E = for the remaining 
set of calculations. This is obviously a higher value than we would wish to use but it 
does mean that we do not have to resolve excessively narrow boundary layers, which, 
in turn means that we need fewer functions in our spectral expansions. 

Our second concession regards the basic state. Here, we constrain the basic state, 
so that it may be considered to be an ambient state (see equation (2.15) where it 
is only the perturbation, 6G,  that is subject to diffusion). We can therefore regard 
the maintenance of the basic state as part of the dynamo problem which we are 
not considering here. In some ways this is similar to the investigation of kinematic 
dynamos where a fluid flow is imposed (for example an ao-effect) and its forcing 
is not considered. The basic state we chose is given by (3.2) and is shown in figure 
2. This field has the feature that it automatically satisfies the insulating boundary 
conditions (a field proportional to some power of the radius obviously cannot do 
so). This is an important consideration, because although we are constraining the 
system to always contain the basic state, we also solve the axisymmetric part of the 
problem, so we need a field that satisfies the boundary conditions. Our complete set 
of parameters is therefore 

c = a = 4.0; [ = n/2. (4.1) 

The first part of the analysis is to find the critical onset (i.e. find A,) from the 
linear theory. We used a combination of the ST code and the LE code to determine 

4.1. Solutions at A = 12 
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m n = O  n = l  n=2 n = 3  n = 4  n = 5  n=6 

1 9.43 10.46 19.76 31.86 45.90 61.75 78.91 
2 10.02 10.59 16.47 32.00 66.36 133.51 234.15 
3 16.24 18.39 27.69 56.12 165.90 1066.05 62796.1 
4 34.55 39.59 60.24 125.20 379.96 1961.99 23920.7 
5 89.29 101.97 152.88 306.87 855.56 3540.01 24402.3 
6 264.12 299.50 438.47 838.27 2134.02 7461.83 37616.6 

TABLE 2. A,(m, n) for c = ; a = 4. 

onset. The important feature here is to find A ,  for the most unstable mode. For 
A > A, growing solutions exist. For parameter set (4.1) the most unstable mode is 
(rn = 1,n = 0)  for which A,  = 9.428. A summary of A,(m,n) is shown in table 2. 

For our first nonlinear ST calculation we chose a value of A = 12 > A ,  (note that at 
A = 12 the ( m  = 1,n = 0)  mode is not the fastest growing mode). Our ST parameters 
were L = 10,K = 6 (where K is the truncation in the z-direction - see Appendix), 
M = 6, At = 5 x Henceforth we will refer to the L,K ,  M combination as 
( L , K , M ) .  The initial conditions for the calculation were B given by (3.2), U = 0 
and a random small perturbation in each mode for b and u where the z-independent 
(n  = 0) modes were given smaller amplitudes relative to the other modes since they 
imply an infinite lengthscale in the z-direction. Equations (2.13)-(2.18) were then 
solved as discussed in the Appendix. Initially, the total fields B and 8 appeared to 
equilibrate fairly rapidly with the non-axisymmetric ( m  = 2, n = 1 ) ;  (m = 4, n = 0 , 2 )  
modes dominating the equilibration (see figure 3, 50z, < t < 1 0 0 ~ ~ ) .  However a closer 
inspection of the fields showed that the ( m  = 1,n = 1 )  mode was growing whilst 
the (rn = 2,n = 1 )  modes were decaying (see figure 3, 1 0 0 ~ ~  < t < 1752,). After 
timestepping further the solution reached a true equilibration (see figure 3, t > 2002,). 
The final equilibrated solution has the following parity: 

m and n even or m and n odd, 

and consists of a steady axisymmetric part and a time-varying non-axisymmetric part. 
A number of different initial conditions were then implemented (including a set with 
large-amplitude z-independent terms) to check the integrity of our solution and in 
each case we found the final equilibrated solution to be the same. 

In figure 4 we show the axisymmetric field components of the equilibrated field in 
the (s,z)-plane where we have taken the annulus and sliced it vertically through the 
z-axis. The sections are the right-hand elevations, the dotted lines represent flow or 
magnetic flux into the page and the solid lines represent flow or magnetic flux out of 
the page. The 6B4 component represents the deviation from the original ambient field. 
In general the axisymmetric field components have relatively smooth representations 
and are dominated by low-wavenumber ( 1 ,  n) combinations. In particular, the Us and 
U, components are dominated by the n = 2 mode whereas the U4 component has an 
n = 2 dependence near to the outer boundary and an n = 0 dependence (i.e. a uniform 
differential rotation) near the inner boundary. Notice also that the magnitude of the 
poloidal velocity field components is much smaller than the toroidal component. It is 
clear that no narrow viscous boundary layers are present. The axisymmetric velocity 
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FIGURE 3 (a.b.c). For caption see facing page. 
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% 
FIGURE 3. Amplitude of the low-order magnetic field modes in mixed physical-spectral space 
(x, n, m) plotted as a function of time: the solid line is, n = 0, the da;hed line is n = 1 and the dotted 
line is n = 2. (a)  go, (b )  b,(m = l),  ( c )  b,(m = 2), ( d )  b,(m = 3), (e )  b,(m = 4). 

field has grown and equilibrated to its steady state through the action of the nonlinear 
Lorentz force - our initial conditions contained no axisymmetric velocity. 

Recalling that the amplitude of the basic state B is O( l), it is clear that the poloidal 
magnetic field components are considerably smaller in amplitude than the toroidal 
part, 6B4. The poloidal field components, B, and B,, are dominated by an n = 2 
structure. The axisymmetric magnetic and velocity field components exhibit definite 
symmetries about the plane z = 0: s- and $-components are symmetric about z = 0 
and z-components are antisymmetric about z = 0. The observed symmetry is due to 
symmetry of the problem under reflection about the midplane z = 0 (see, for example, 
Knobloch 1994). 

In figure 5 the total radial field and total radial flow components for A = 12 are 
shown. Notice that we only plot the s, 4 cross-section (at z = +c/4) at one instant in 
time since the field patterns rotate rigidly in time. The most striking feature of the 
s , 4  plot is the dominance of the m = 1 mode, and it turns out that this rotating wave 
propagates in a westwardly direction with a period of roughly ten slow timescales. 
Notice that despite the rn = 1 dominance other modes have been excited which 
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CI = 3.1414 x lo4 CI = 8.9012 x lo-) CI = 1.9385 x 

B, a B. 

CI = 5.3819 x lo4 CI = 4.5720 x lo-) CI = 2.0225 x lo-.’ 

FIGURE 4. Steady axisymmetric field components of the equilibrated solution A = 12 in the 
(s, z)-plane, right elevation. CI is the dimensionless contour interval. 

distorts the rn = 1 picture slightly. It is also clear from the solution that the field 
and flow are, as expected, tied together and the flow anchors the field. Also shown in 
figure 5 is the temporal evolution of B, and o3 in the sz-plane at 4 = 0. Notice the 
dominance of the axial wavenumber n = 1. 

As discussed above, the linear theory predicts that the most unstable mode is the 
axially independent rn = 1 mode, which has an infinite period. Here, the equilibrated 
nonlinear solution is, in fact, dominated by the rn = l ,n = 1 mode, i.e. the most 
unstable axially dependent mode. For example the frequency, q l ,  of the rn = 1, n = 1 
non-axisymmetric mode shown in figure 5 is -0.67389202 and the frequencies of the 
other modes that contribute to the final solution are related to the ‘resonant’ frequency 
by = rn x c q l .  Note that from the linear theory the critical frequency of 01,1 is 

As in the linear spectral analysis the convergence in space and time of the final 
solution is important if we are to view the figures 4 and 5 with any confidence. We have 
checked the convergence of the final solution both qualitatively and quantitatively. 
We increased/decreased the truncation parameters (L ,  K, M) to find new solutions: if 
the new solutions at different truncation are substantially different then our solution 
has not converged to its true solution. As a quantitative check on convergence we 
calculated the total magnetic energy, E M ,  (found by taking the scalar product of (2.5) 
with B and integrating over the volume of the annulus) for various truncations. The 
results are shown in table 3. It is clear that as the number of angular functions, To, is 
increased from 16 to 42 (keeping the radial truncation fixed at L = lo), EM converges. 
Although the rn = l , n  = 1 mode dominates the final solution we need several rn and 

-0.66286501. 
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r = O  (a)  
0 

18 

d 
CI = 7.6139 x m3 

t = O  (b )  

CI = 1.6654 x 1 0-2 

FIGURE 5. Evolution of total field components (a )  B, and ( b )  o,$ plotted over 10 slow timescales in 
the (s,z)-plane at I$ = 0 and at t = 0 in the (s,I$)-plane at z = [/4 for A = 12 . 
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( L , K , M )  T, EwxlO-’ 

(10,3,4) 16 9.3674 
(10,4,4) 20 9.3627 
(10,4,4)+ 20 9.3546 
(10,4,5) 25 9.4318 
(10,5,5) 30 9.4315 
(14,6,6) 42 9.1004 
(19,6,6) 42 9.1026 

TABLE 3. Convergence of EM where T, is the total number of angular modes. 
tST calculation with Af = 2.5 x 

n modes since energy is transferred from the low-order modes to the higher-order 
modes. As we increase the radial truncation L from 10 to 14 to 19, EM also converges. 
Notice also that the reduction in timestep from At = 5 x lop4 to At = 2.5 x shows 
that the solution is also well converged in time. Qualitative convergence checks were 
made by comparing field plots for various truncations, and the differences between the 
plots for the truncations shown in table 3 are negligible. We are therefore confident 
that our (10,6,6) solution is representative of the converged solution, and continue 
with this truncation parameter set in the calculations below. 

4.2. Solutions at higher A 

Subsequently, we varied A systematically to see what effect this has on the solution. 
Calculations were carried out at A = 14,16,. . . ,30 where the ‘previous’ solution was 
used as the initial condition for the ‘current’ A .  We have not calculated solutions 
for A > 30 since considerably more modes are excited and the truncation required 
becomes impractical. In figures 6 and 7 we plot field components for A = 20 and in 
figures 8 and 9 the fields are plotted for A = 30. Energy convergence checks were 
made at A = 20 and A = 30 for truncation parameter set (10,6,6) which showed that 
this set gives adequate spatial resolution. Figures 6 and 8 show that the axisymmetric 
fields retain their relatively smooth character although the field strengths increase as 
A is increased from A = 20 to A = 30. The toroidal field components have essentially 
the same structure as the field is increased and near the outer vertical boundary an 
n = 4 structure is evident for U $ .  There is a similar axially dependent structure for 
the B, poloidal field component. These higher axial wavenumber features are not 
present in the A = 12 axisymmetric cross-section (see figure 4). In general, although 
the field components for A = 20 and A = 30 are similar, the structure of the field 
components for A = 12 is quite different, especially the radial structure of the poloidal 
components. For example, if the A = 20 and A = 30 UZ-components are compared 
with their A = 12 counterpart then it is clear that not only has the field increased in 
strength, but its structure has changed. 

Figures 7 and 9 show the total radial field and flow components for A = 20 and 
A = 30 respectively. It is clear that the fields are no longer completely dominated 
by the m = 1 mode, and the emergence of an rn = 2 feature can be seen as the field 
strength is increased. As in the A = 12 calculation the field and flow are tied and the 
field strength increases as A is increased. Also the waves propagate in a westwardly 
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CI = 1.8515 x lo-’ C1 = 1.9958 x lo-’ CI = 6.0499 x lo-’ 

B, 6B* B. 

CI = 2.4574 x lo-’ CI = 2.1923 x 10.’ CI = 6.0324 x lo-’ 

RGURE 6.  As figure 4 but A = 20. 

direction and again the frequency of the solution is closely related to the frequency 
of the (rn = 1,n = 1) mode. 

In figure 10 the amplitude of the non-axisymmetric field component b, at a point in 
space (s = 0.62,$ = a/2, z = +(/4) is plotted as a function of time for A = 12,20,30. 
As A is increased the local maximum that occurs between two global maxima becomes 
more pronounced - the spatial representation of this effect is the emergence of the 
m = 2 feature. Also, the mean $-component of the Lorentz force ( j  x B ) b  is plotted 
in figure 1 1  for A = 12,20,30. Notice that much of the structure is concentrated near 
to the vertical boundaries and that its magnitude is small in the main body of the 
fluid. This is especially true for A = 30 (figure llc). 

The total magnetic energy EM is plotted as a function of A in figure 12 ( A c  is 
marked for reference). As A is increased above critical the system equilibrates to a 
finite-amplitude solution - the critical onset is as predicted by the linear theory and 
the amplitude of the solution near to critical is finite, but too small to be seen clearly 
on this graph. The trend shown in figure 12 is indicative of a supercritical bifurcation. 
No evidence of subcritical behaviour was found, i.e. no growing (stable or unstable) 
solutions were found for A c Ac, and in each subcritical search the fields decayed 
rapidly. 

Figure 13 shows 5 plotted as a function of A,  where 



i 01 X EE68'E = I3 
0 

0 
0=i 

i-01 x ZL19.i: = 13 

7-01 X 9891'5 = 13 7-01 X LZ9O'Z = 13 z-01 X 8IZE'E = I3 

d 
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CI = 3.3979 x CI = 2.5530 x lo‘? CI = 1.1406 x lo-* 

B, 6B, B. 

CI = 4.1345 x CI = 3.5594 x lo-* CI = 1.0181 x lo-* 

FIGURE 8. A5 figure 4 but A = 30. 

5 is a measure of the degree to which Taylor’s constraint is satisfied (Ierley 1985). As 
A is increased through Ac, 5 increases to a maximum near A = 20 and then steadily 
decreases thereafter, i.e. the solution becomes less viscously limited as A is increased 
- recall that the structure of the axisymmetric +-component of the Lorentz force 
was restricted to the boundaries as A was increased and that its amplitude became 
smaller in the main body of the fluid (figure 11). The best we can say from this is 
that the solutions we have found are of Ekman type (i.e. they are viscously limited) 
although the effects of viscosity become less pronounced as the field strengthens. For 
viscously limited solutions the magnetic field should scale as - (see, for example, 
Hollerbach & Ierley 1991). The maxima of B, for varying A,  vn, in the (s,$)-plane 
at z = +[/4, are w 0.0316 for E = lW3) 
and the amplitude we find is not inconsistent with the E”* scaling (future calculations 
at varying e should verify this scaling). In contrast, for true Taylor-type solutions 
the magnetic field is O( 1) and the effects of viscosity are limited to narrow boundary 
layers, and can be neglected in the main body of the fluid. 

In figure 14 the frequency of the ( m  = l , n  = 1) mode is plotted as a function of A .  
The frequency of this mode for the linear and the nonlinear solutions is very similar, 
but has slightly smaller magnitude for the nonlinear solution as A is increased - this is 
due to the nonlinear mode interaction: the linear frequency is calculated in isolation 
and does not depend on the other modes. In the nonlinear case the frequency of the 
whole solution (as is evident in the s, + plots) is characterized by the frequency of the 
( m  = 1, n = 1) mode despite energy transfer from this mode to higher (m = 2,3,. . .) 
modes as A is increased. 

w 0.025;1$20 % 0.073;1#30 % 0.072 
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1 = 0  1 = 2  r = 4  

CI = 4.8181 x CI = 4.3516 x CI = 2.6145 X lo-* 

CI = 3.3431 x 10 

= n  
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t =  10 

P- 
CI = 4.3185 x 10 -2 CI = 4.8937 x 

= 2  r = 4  

CI = 3.8836 x CI = 4.2972 x CI = 3.2786 x 

1 = 6  r = 8  I =  10 

0 
t = O  

0 

CI = 2.8810 x 

0 
r = O  

0 

CI = 2.9165 x 

CI = 4.3214 x CI = 3.7360 x 10.’ CI = 4.0239 X 

FIGURE 9. As figure 5 but A = 30. 
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FIGURE 10. Amplitude of the non-axisymmetric field component b, at (s = 0.62, = n/2, z = [/4) 
plotted as a function of time for (a) A = 12, ( b )  A = 20, (c) A = 30. 
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CI = 6.5022 x CI = 1.2928 x lo-’ CI = 2.9836 x lo-’ 

FIGURE 11. (1 x b)+ plotted in the (s,z)-plane for (a )  A = 12, (b)  A = 20, ( c )  A = 30. 
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0.6 - 
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5. Discussion 
The above analysis has shown that above the critical onset predicted from the 

linear theory the solution equilibrates to finite amplitude on the stable branch of 
the energy bifurcation diagram. The equilibration mechanism is through nonlinear 
interaction (Lorentz force and advection) and is dominated by the most unstable 
axially dependent mode which determines the frequency of the whole solution - the 
nonlinear solution is ‘trapped’ by the dominant linear mode. Further, the equilibrated 
solutions exist in a state that has a finite axisymmetric differential rotation in the 
inner region of the annulus - a feature that generally tends to stabilize solutions in 
the linear regime. 

Of particular interest is the critical nature of the bifurcation diagram shown in 
figure 12. Here we could only find supercritical solutions for our chosen basic state 
whereas subcritical solutions may be more representative of the type of instabilities 
that trigger magnetic field reversal - the field remains stable for long periods of 
geological time but reverses fairly rapidly. 
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FIGURE 13. ( plotted as a function of A.  
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10 14 18 22 26 30 
A 

FIGURE 14. Frequency of the (m = 1,n = 1 )  mode, W I  plotted as a function of A.  Solid circles 
represent the frequency found from the nonlinear calculation and solid boxes represent the frequency 
found from the linear calculation. 

There are, of course, a number of further steps that need to be made. Perhaps the 
most fundamental step is an examination of more realistic E ,  i.e. we need to lower 
E substantially. As discussed in $4 the current choice of c is numerically expedient, 
but not necessarily representative of the Earth’s core and it would be imprudent to 
make comparisons between the flows found here and those found from observation. 
Of course the most undesirable effect of lowering E will be the need to increase the 
number of spectral functions, which in turn means that we will need to reduce the 
timestep to satisfy the Courant condition. One of our early presumptions was that 
we would be able to restrict the truncation in the axial and azimuthal directions to a 
few modes: the linear theory predicts that for a choice of A just greater than A, for 
the most unstable mode, higher wavenumber modes will simply decay. However in 
the nonlinear case the most unstable mode grows and transfers energy to the higher 
wavenumber modes so that it is no longer valid to truncate the expansions at low 
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angular order - in general we required between 20 and 42 angular modes to resolve 
the nonlinear equilibrated solution (see table 3). The calculation of nonlinearities in 
4 and z is currently designed for low angular order, but it would be a relatively 
simple matter to calculate these nonlinearities using FFTs, which would speed up the 
calculation for higher M and N .  

We also need to examine basic states that better mimic fields that may occur in 
the core (e.g. low-order decay modes - see Zhang & Fearn 1993) and investigate 
the effect the boundary conditions have on the type of solution found. Further, the 
instability we have investigated here is generally of resistive type. It would also be 
instructive to study ideal instabilities and investigate their behaviour as they evolve 
to finite amplitude. 

This work is supported by the Particle Physics and Astronomy Research Council 
of Great Britain under grant GR/H 03506. 

Appendix. Numerical method 
In space, the governing equations are solved spectrally and each dependent variable 

is approximated by a finite sum of expansion functions. The stress-free, perfectly 
conducting flat ends enable us to choose expansion functions in z that automatically 
satisfy the boundary conditions (2.21) 

These expansions have been used by Lan, Kuang & Roberts (1993). Notice that the 
axial wavenumber, n, of Fearn (1983) is related to the k of (A 1) and (A 2) by 
n = kn/22;. In the radial direction we expand our dependent variables in terms of 
Chebychev functions TI (x) where s is mapped into coordinate x by 

2s - 1 - Sib 
X =  

1 - Sib . 
This mapping allows us to use the Chebychev mesh points defined by a Gauss-Lobatto 
grid 

(A 3) 
which means that the Chebychev polynomials are just cosine functions. Notice that 
these mesh points include the boundaries x = f l .  In the &direction the dependent 
variables are expanded in terms of complex Fourier series. The eight dependent 
variables can therefore be expressed as 

x i  = cos(in/L), i = 0,1,. . . , L - 1, L, 
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m=M k=K /=L+Z 1 

m=l k=O 1=0 

m=M k=K I=L 

k 5  m=l k = l  I=O 

Notice that we have included two extra terms in the radial spectral sum for w and I/ 
- this ensures that the resulting equations and boundary conditions form a complete 
set - there are four boundary conditions for each of w and V .  

Our numerical method closely follows the methods described in Jones (1981, 1985), 
Barenghi & Jones (1989) and Barenghi (1991). To illustrate the method we shall 
describe the axisymmetric expansion (the non-axisymmetric variables are treated sim- 
ilarly). Axisymmetric expansions (A 4)-(A 7) give us a set of (4K + 2)(L + 1 )  + 2K 
unknown coefficients in time. Substituting these expansions into the boundary con- 
ditions (2.21) and (2.22) gives 10K + 4 equations - we therefore need a further 
(4K + 2)(L - 1) equations for closure. We retrieve the first set of equations by 
a Galerkin method in the z-direction: we substitute our expansions into the gov- 
erning equations (2.13)-(2.16), multiply each equation by a test function (either 
cospn(z + [)/26 or sinpn(z + ()/21;) and then integrate over the cylinder height. 
For example, to retrieve a Galerkin equation for H (the axisymmetric vector po- 
tential) we substitute our expansions into (2.16) and multiply the resulting equation 
by sinpn(z + 6)/21; and integrate from -1; to +1;. The nonlinear terms that con- 
tain products of sines and products of cosines are then expressed as the sums of 
cosines. A similar process is carried out for the other equations, resulting in a total 
of 4K + 2 Galerkin equations. In the radial direction collocation is used, whereby 
the test functions are shifted Dirac delta-functions centred on so-called collocation 
points (A 3), and we demand that each equation must be satisfied at each of the 
( L  - 1)  interior collocation points. Boundary conditions are explicitly imposed at xg 
and XL. The Galerkin-collocation method gives the extra (4K + 2)(L - 1) equations 
required. 

For the non-axisymmetric variables we carry out the same process, but we also use 
a Galerkin method the azimuthal direction. For example, given the non-axisymmetric 
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momentum equations 

Au = u 

where A is a matrix of linear operators and boundary conditions, u is the non- 
axisymmetric solution vector and u is the nonlinear Lorentz vector, our Galerkin- 
collocation method leads to the following matrix-vector structure : 

K. A .  Hutcheson and D. R. Fearn 

Matrix A is a 'diagonal' matrix with 'elements' which are, in turn, collocation matrices: 
i.e. for each ( m , k )  Galerkin combination there is a corresponding collocation matrix 

The time integration of the induction equation is performed in mixed physical- 
spectral space (x, m, k ) .  We apply an unconditionally stable method for the linear 
diffusion terms - the Crank-Nicolson (CN) method - and we use an explicit Adams- 
Bashforth (AB) method for the remaining nonlinear terms. If for axial wavenumber 
k ,  we write the H-equation (2.16) at collocation point xi as 

C d .  

where ?~ is a typical nonlinear coefficient of [ V x ( U  x B ) ] 4  at point xi,then in our 
CN-AB representation 

- - f i ik(Xj ,  t A t )  - fiik(Xi, f) 
At 
A-1/2[D2(fi&(xi, t + A t ) )  + D2(&(xi, t ) ) ]  + i[3kik(xi, t )  - k&i, t - At) ] .  

SinceJhe CN method is implicit, the dependent variable at the new timestep (in this 
case &(xi, f + A t ) )  appears on both sides of the equation. Because of this we need to 
invert a matrix but this need only be carried out once and then stored for future time 
integrations. Given the total magnetic and velocity fields at timesteps t and t - At, we 
can advance the total magnetic field to timestep t + At. Subsequently the diagnostic 
momentum equations are solved at timestep t + At. 

Because the dependent variables have been expanded in terms of well-known 
functions it is easy to differentiate accurately in spectral space. For the Chebychev 
functions differentiation is carried out using recursion relations, whilst Fourier differ- 
entiation is carried out directly (i.e. by multiplying by powers of the axial or azimuthal 
wavenumbers as appropriate). In the radial direction fast Fourier transforms (FFTs) 
are used to move between physical space (x) and spectral space ( I )  - multiplications 
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are performed at collocation points x i .  (Aliasing errors are spectrally small and can 
be neglected.) In the angular directions multiplications are carried out in spectral 
space where products of cosines and sines are expressed as sums of cosines and sines 
etc. These nonlinear algorithms were checked against test data, whereby two vectors 
f(s, 4, z ,  t )  and g(s, 4, z ,  t )  were used as input, their nonlinear products calculated 
analytically, and compared with results from the nonlinear code. 
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